Dynamic Extensions to the Presence Information Data Format
Location Object (PIDF-LO)

Abstract

The Geopriv Location Object introduced by the Presence Information Data Format - Location Object (PIDF-LO), RFC 4119, defines a basic XML format for carrying geographical information of a presentity. This document defines PIDF-LO extensions to convey information about moving objects. Elements are defined that enable expression of spatial orientation, speed, and heading of the presentity.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741.

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc5962.
1. Introduction ....................................................2
2. Terminology .....................................................3
3. Dynamic Elements ................................................3
   3.1. Angular Measures and Coordinate Reference Systems ....5
4. Dynamic Feature XML Schema ......................................6
5. Security Considerations .........................................7
6. IANA Considerations ................................................7
   6.1. Dynamic Feature Extensions Namespace Registration ......7
   6.2. Dynamic Feature Extensions Schema Registration ..........8
7. Acknowledgements ................................................8
8. References ......................................................9
   8.1. Normative References .......................................9
   8.2. Informative References .....................................9
Appendix A.  Earth Centered, Earth Fixed Direction Vectors ........10

1.  Introduction

The Presence Information Data Format - Location Object (PIDF-LO) (see RFC 4119 [RFC4119]) provides geographical location of a presentity. This corresponds to a physical location at a given instance of time. RFC 5491 [RFC5491] extends PIDF-LO and provides additional guidelines to implementers.

This document extends PIDF-LO to convey spatial orientation, speed, and heading of a presentity. The addition of rate-of-change information to the PIDF-LO enables a range of use cases. These use cases either use dynamic information directly or use that information
for smoother tracking of a position over time. For example, an application that continuously tracks a presentity could use velocity information to extrapolate positions in between times that location information is measured. A shipping company could directly use speed to monitor delivery truck speed to ensure speed limits are observed.

2. Terminology

In this document, the key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" are to be interpreted as described in RFC 2119 [RFC2119].

This document uses the term "presentity", as defined in RFC 2778 [RFC2778], to refer to the device subject to location determination. The similarity to presence concepts and the abstract location privacy architecture, as described in RFC 4079 [RFC4079], led to re-use of the Presence Information Data Format (PIDF) (see RFC 3863 [RFC3863]), and its enhancement for location information (see RFC 4119 [RFC4119]). Note that this document does not differentiate between human and non-human objects, and hence both are in scope.

3. Dynamic Elements

This document defines a new element, <Dynamic>, for the conveyance of dynamic information.

Dynamic information MAY be included without any other location information being present. When dynamic information is associated with information about the instantaneous position of the presentity, the <Dynamic> element MUST be included in the same <location-info> element as the corresponding geodetic (or civic) location information.

Dynamic information can be safely ignored by a recipient that does not support this specification. The <Dynamic> element contains the following components:

orientation:

The <orientation> element describes the spatial orientation of the presentity -- the direction that the object is pointing. For a device, this orientation might depend on the type of device. See Section 3.1 for details.
speed:

Speed is the time rate of change in position of a presentity without regard for direction: the scalar component of velocity. The value for the <speed> element is a measure that is defined in meters per second.

heading:

Heading is the directional component of velocity. See Section 3.1 for details.

Each element can be omitted if no information is available. In the following example, the presentity is approximately oriented to the North at a slightly elevated angle. The presentity is travelling 24 meters per second to the West:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<presence
  xmlns="urn:ietf:params:xml:ns:pidf"
  xmlns:gp="urn:ietf:params:xml:ns:pidf:geopriv10"
  xmlns:gml="http://www.opengis.net/gml"
  entity="pres:alice@example.com">
  <dm:device id="abc123">
    <gp:geopriv>
      <gp:location-info>
        <dyn:Dynamic>
          <dyn:orientation>-3 12</dyn:orientation>
          <dyn:speed>24</dyn:speed>
          <dyn:heading>278</dyn:heading>
        </dyn:Dynamic>
      </gp:location-info>
      <gp:usage-rules/>
      <method>gps</method>
    </gp:geopriv>
  </dm:device>
</presence>
```
Another example shows a PIDF-LO document of the presentity alice@example.com on a bike travelling 12 meters per second. Her position is indicated as a circle. The values for speed may be used by a receiver to adjust the uncertainty over time.

<?xml version="1.0" encoding="UTF-8"?>
<presentity xmlns="urn:ietf:params:xml:ns:pidf"
xmlns:gp="urn:ietf:params:xml:ns:pidf:geopriv10"
xmlns:gml="http://www.opengis.net/gml"
xmlns:gs="http://www.opengis.net/pidflo/1.0"
entity="pres:alice@example.com">
<dm:device id="abc123">
<gp:geopriv>
<gp:location-info>
<gs:Circle srsName="urn:ogc:def:crs:EPSG::4326">
<gml:pos>42.5463 -73.2512</gml:pos>
<gs:radius uom="urn:ogc:def:uom:EPSG::9001">
100
</gs:radius>
</gs:Circle>
<gp:usage-rules/>
<method>gps</method>
</gp:location-info>
<timestamp>2009-06-22T20:57:29Z</timestamp>
<dm:deviceID>mac:1234567890ab</dm:deviceID>
</dm:device>
</gp:geopriv>
</presence>

3.1. Angular Measures and Coordinate Reference Systems

[RFC5491] constrains the coordinate reference system (CRS) used in PIDF-LO to World Geodetic System 1984 (WGS 84), using either the two-dimensional (latitude, longitude) CRS identified by "urn:ogc:def:crs:EPSG::4326" or the three-dimensional (latitude, longitude, altitude) CRS identified by "urn:ogc:def:crs:EPSG::4979". Dynamic locations similarly assume that either of these coordinate reference systems will be used.

The <orientation> and <heading> elements both describe a direction. The <orientation> element describes the "direction of facing"; the <heading> element describes the "direction of travel". Both measures
contain one or two angular values that are expressed relative to the
current position of the presentity (see Appendix A). Angular
measures are expressed in degrees, and values can be negative. If
two measures are present, the values MUST be separated by whitespace.

The first measure specifies the horizontal direction from the current
position of the presentity to a point that it is pointing towards
(for <orientation>) or travelling towards (for <heading>). Horizontal
angles are measured from Northing to Easting. Horizontal
angles start from zero when pointing to or travelling towards the
North and increase towards the East.

The second measure, if present, specifies the vertical component of
this angle. This angle is the elevation from the local horizontal
plane. If the second angle value is omitted, the vertical component
is unknown. If only one angle is present, <orientation> describes
only the horizontal component. For <heading>, the associated <speed>
measure contains only the horizontal component of speed.

4. Dynamic Feature XML Schema

```xml
<?xml version="1.0"?>
<xs:schema
  targetNamespace="urn:ietf:params:xml:ns:pidf:geopriv10:dynamic"
  xmlns:xs="http://www.w3.org/2001/XMLSchema"
  elementFormDefault="qualified"
  attributeFormDefault="unqualified">
  <xs:element name="Dynamic" type="dyn:dynamicType"/>
  <xs:complexType name="dynamicType">
    <xs:complexContent>
      <xs:restriction base="xs:anyType">
        <xs:sequence>
          <xs:element name="orientation" minOccurs="0"
                       type="dyn:directionType"/>
          <xs:element name="speed" minOccurs="0"
                       type="xs:double"/>
          <xs:element name="heading" minOccurs="0"
                       type="dyn:directionType"/>
          <xs:any namespace="##other" processContents="lax"
                   minOccurs="0" maxOccurs="unbounded"/>
        </xs:sequence>
        <xs:anyAttribute namespace="##other" processContents="lax"/>
      </xs:restriction>
    </xs:complexContent>
  </xs:complexType>
</xs:schema>
```
5. Security Considerations

This document defines additional location elements carried by PIDF-LO. These additional elements provide greater reason to observe the privacy and security considerations described in RFC 4119 [RFC4119]. No further privacy or security measures are necessary.

RFC 4119 points back to RFC 3694 [RFC3694] and RFC 3693 [RFC3693] to describe the threat model and the security requirements imposed on the GEOPRIV architecture for sharing location information as a result of the threat model. It is important to note that these two documents often refer to threats related to the current location information of a presentity, while this document introduces dynamic information that may be used by attackers to anticipate the future location of a presentity. While already a series of location snapshots is likely to offer information for guessing the future location of a presentity, it has to be said that including more information in a PIDF-LO does increase the severity of an information leak. Those who deploy location-based services are in general strongly advised to provide their users with ways to control the distribution of location information to those who have been authorized to see it.

6. IANA Considerations

This section registers a new XML namespace (as described in [RFC3688]) and a new XML schema.

6.1. Dynamic Feature Extensions Namespace Registration


Registrant Contact: IETF Geopriv Working Group, Hannes Tschofenig (hannes.tschofenig@gmx.net).
6.2. Dynamic Feature Extensions Schema Registration


Registrant Contact: IETF Geopriv Working Group, Hannes Tschofenig  
(hannes.tschofenig@gmx.net)

XML: The XML schema registered is contained in Section 4. Its first  
line is

<?xml version="1.0"?>  

and its last line is

</xs:schema>

7. Acknowledgements

We would like to thank Klaus Darilion, Cullen Jennings, Rohan Mahy,  
Carl Reed, and Brian Rosen for their comments. Furthermore, we would  
like to thank Alexey Melnikov, Adrian Farrel, Tim Polk, Dan Romascanu  
for his IESG review comments, Avshalom Houri for his GenArt review,  
Hilarie Orman for her SECDIR review, and Joel Jaeggli for his  
Operations Directorate review.
8. References

8.1. Normative References


8.2. Informative References


Appendix A.  Earth Centered, Earth Fixed Direction Vectors

The absolute orientation or heading of a presentity depends on its latitude and longitude.  The following vectors can be used to determine the absolute direction in the WGS 84 Earth Centered, Earth Fixed (X, Y, Z) coordinate space.

The direction of North as a unit vector in Earth Centered, Earth Fixed (ECEF) coordinates is:

\[
\text{North} = \begin{bmatrix}
-1 \times \sin(\text{latitude}) \times \cos(\text{longitude}), \\
-1 \times \sin(\text{latitude}) \times \sin(\text{longitude}), \\
\cos(\text{latitude})
\end{bmatrix}
\]

The direction of "up" (the upward normal of the horizontal plane) as a unit vector in ECEF coordinates is:

\[
\text{Up} = \begin{bmatrix}
\cos(\text{latitude}) \times \cos(\text{longitude}), \\
\cos(\text{latitude}) \times \sin(\text{longitude}), \\
\sin(\text{latitude})
\end{bmatrix}
\]
Authors’ Addresses

Henning Schulzrinne
Columbia University
Department of Computer Science
450 Computer Science Building
New York, NY 10027
US
Phone: +1 212 939 7004
EMail: hgs@cs.columbia.edu
URI: http://www.cs.columbia.edu/

Vishal Singh
Columbia University
Department of Computer Science
450 Computer Science Building
New York, NY 10027
US
EMail: vs2140@cs.columbia.edu
URI: http://www.cs.columbia.edu/~vs2140

Hannes Tschofenig
Nokia Siemens Networks
Linnoitustie 6
Espoo 02600
Finland
Phone: +358 (50) 4871445
EMail: Hannes.Tschofenig@gmx.net
URI: http://www.tschofenig.priv.at/

Martin Thomson
Andrew Corporation
Wollongong
NSW Australia
EMail: martin.thomson@andrew.com