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1.

I nt roducti on

Al t hough several standards for elliptic curves and domain paraneters
exist (e.g., [ANSI 1], [FIPS], or [SEC2]), sone nmjor issues have
still not been addressed:

o Not all parameters have been generated in a verifiably pseudo-
randomway. |In particular, the seeds fromwhich the curve
paraneters were derived have been chosen ad hoc, |eaving out an
essential part of the security proof.

0 The prines selected for the base fields have a very special form
facilitating efficient inplenmentation. This does not only
contradi ct the approach of pseudo-random paraneters, but al so
increases the risk of inplenmentations violating one of the
nunerous patents for fast nodular arithnmetic with special prines.

0 No proofs are provided that the proposed paraneters do not bel ong
to those classes of paraneters that are susceptible to
cryptanal ytic attacks with sub-exponential conplexity.

0 Recent research results seemto indicate a potential for new
attacks on elliptic curve cryptosystens. At |least for
applications with the highest security demands or under
circunstances that conplicate a change of paranmeters in response
to new attacks, the inclusion of a corresponding security
requi renent for domain paraneters (the class group condition, see
Section 2) is justified.

o Sone of the proposed subgroups have a non-trivial cofactor, which
demands additional checks by cryptographic applications to prevent
smal | subgroup attacks (see [ANSI 1] or [SEC1]).

0 The donain paraneters specified do not cover all bit |engths that
correspond to the commonly used key | engths for symetric
cryptographic algorithns. |In particular, there is no 512-bit
curve defined, but only one with a 521-bit [ ength, which may be
di sadvant ageous for sone inpl enentations.

Furthernore, nany of the paranmeters specified by the existing
standards are identical (see [SEC2] for a conparison). Thus, there
is still a need for additional elliptic curve domain paraneters that
overcone the above limtations.
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1.1. Scope and Relation to OQher Specifications

This RFC specifies elliptic curve domain paraneters over prinme fields
G-(p) with p having a length of 160, 192, 224, 256, 320, 384, and 512
bits. These paraneters were generated in a pseudo-random yet

conpl etely systematic and reproduci ble, way and have been verified to
resist current cryptanal ytic approaches. The parameters are
conpliant with ANSI X9.62 [ANSI 1] and ANSI X9.63 [ANSI2], I1SQIEC
14888 [I1SOL] and | SO I EC 15946 [ISO2], ETSI TS 102 176-1 [ETSI], as
well as with FIPS-186-2 [FIPS], and the Efficient Cryptography G oup
(SECG specifications ([ SEC1] and [ SEC?]).

Furthernore, this docunent identifies the security and inplenentation
requirenents for the paraneters, and describes the nmethods used for
the pseudo-random generati on of the paraneters.
Finally, this RFC defines ASN. 1 object identifiers for all elliptic
curve dommi n paraneter sets specified herein, e.g., for use in X 509
certificates.
Thi s docunent does neither address the cryptographic algorithns to be
used with the specified paraneters nor their application in other
standards. However, it is consistent with the follow ng RFCs that
specify the usage of elliptic curve cryptography in protocols and
appl i cations:
o [RFC5753] for the cryptographic nessage syntax (CMS)
0 [RFC3279] and [ RFC5480] for X. 509 certificates and CRLs
0 [RFC4050] for XM signatures
0 [RFC4492] for TLS
0 [RFC4A754] for IKE

1.2. Requirenents Language
The key words "MJST", "MJST NOT", "REQU RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMVENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in RFC 2119 [ RFC2119].

2. Requirenents on the Elliptic Curve Domain Paraneters
Thr oughout this nmeno, let p > 3 be a prine and G-(p) a finite field
(sonetines also referred to as Galois Field or G-(p)) with p

el ements. For given A and B with non-zero 4*A*"3 + 27*B"2 nod p, the
set of solutions (x,y) for the equation Ei y*"2 = x*"3 + A*x + B nod p
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over GF(p) together with a neutral elenent O and well-defined | ans
for addition and inversion define a group E(GF(p)) -- the group of
G-(p) rational points on E. Typically, for cryptographic

applications, an elenment G of prinme order q is chosen in E(G-(p)).

A conprehensive introduction to elliptic curve cryptography can be
found in [CFDA] and [BSS].

Note 1: W choose {0,...,p-1} as a set of representatives for the
el ements of GF(p). This choice induces a natural ordering on G-(p)

2.1. Security Requirenents

The followi ng security requirenents are either notivated by known
cryptographic analysis or aimto enhance trust in the recomended
curves. As this specification ains at a particularly high | evel of
security, a restrictive position is taken here. Nevertheless, it nmay
be sensible to slightly deviate fromthese requirenents for certain
applications (e.g., in order to achieve higher conputationa
performance). Mre details on requirenents for cryptographically
strong elliptic curves can be found in [CFDA] and [BSS].

1. Immunity to attacks using the Wil or Tate Pairing. These
attacks all ow the enbeddi ng of the cyclic subgroup generated by G
into the group of units of a degree-lI extension GF(p”*l) of G-(p),
wher e sub-exponential attacks on the discrete |ogarithm problem
(DLP) exist. Here we have | = mn{t | q divides p~t - 1}, i.e.,
| is the order of p nbd qo By Fermat's Little Theorem | divides
g-1. W require (g-1)/1 < 100, which nmeans that | is close to
the maxi mum possi ble value. This requirenment is considerably
stronger than those of [SEC2] and [ANSI 2] and al so excl udes
supersi ngul ar curves, as those are the curves of order p+1

2. The trace is not equal to one. Trace one curves (or anonal ous
curves) are curves with #E(G-(p)) = p. Satoh and Araki [ SA],
Senaev [Sen], and Smart [Sma] independently proposed efficient
solutions to the elliptic curve discrete |ogarithm problem
(ECDLP) on trace one curves. Note that these curves are al so
excl uded by requirenent 5 of Section 2.2.

3. Large class nunber. The class nunber of the nmaxi nal order of the
quotient field of the endonorphismring End(E) of E is |arger
than 107r7. Generally, E cannot be "lifted" to a curve E over an
al gebraic nunber field L with End(E) = End(E ) unl ess the degree
of L over the rationals is |larger than the class nunber of
End(E). Although there are no efficient attacks exploiting a
smal | class nunber, recent work ([JW] and [HR]) al so may be seen
as argunment for the class nunber condition
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4. Prime group order. The group order #E(G-(p)) shall be a prine
nunber in order to counter snall-subgroup attacks (see [HW]).
Therefore, all groups proposed in this RFC have cofactor 1. Note
that curves with prine order have no point of order 2 and
therefore no point with y-coordi nate O.

5. Verifiably pseudo-random The elliptic curve domai n paraneters
shal | be generated in a pseudo-random manner using seeds that are
generated in a systematic and conprehensive way. The nethods by
whi ch the paranmeters have been obtai ned are explained in Appendi x
A

6. Proof of security. For all curves, a proof should be given that
all security requirements are net. These proofs are provided in
[ EBP] .

In [BG, attacks are described that apply to elliptic curve donmain
paraneters where -1 has a factor u in the order of g~(1/3).
However, the circunstances under which these attacks are applicable
can be avoided in nost applications. Therefore, no correspondi ng
security requirenment is stated here. However, it is highly
recomended that devel opers verify the security of their

i npl ement ati ons agai nst this kind of attack.

2.2. Technical Requirenents

Conmrer ci al demands and experience with existing inplenmentations |ead
to the followi ng technical requirenents for the elliptic curve domain
paraneters

1. For each of the bit lengths 160, 192, 224, 256, 320, 384, and
512, one curve shall be proposed. This requirement follows from
the need for curves providing different |evels of security that
are appropriate for the underlying symetric algorithns. The
exi sting standards specify a 521-bit curve instead of a 512-bit
curve.

2. The prime nunber p shall be congruent 3 nod 4. This requirenent
all ows efficient point conpression: one nethod for the
transm ssion of curve points P=(x,y) is to transmt only x and
the least significant bit LSB(y) of y. For p = 3 nod 4, we get
(y*2)"M((p+1)/4) = y*y*((p-1)/2), which is either y or -y by
Fermat’'s Little Theorem hence, y can be conputed very
efficiently using the curve equation. This requirenent is not
al ways nmet by the paraneters defined in existing standards.
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3. The curves shall be G-(p)-isonorphic to a curve E: y*"2 = x"3 +
A*x + B nmd pwith A =-3 nod p. This property permts the
use of the arithmetical advantages of curves with A = -3, as
shown by Brier and Joyce [BJ]. For p = 3 nod 4, approxinately
hal f of the isonorphismclasses of elliptic curves over GF(p)
contain a curve E with A = -3 nod p. Precisely, if a curve is
given by EE y*2 = x*"3 + A*x + Bnod p with -3 = A*u”4 being
solvable in GF(p) and u=Z is a solution to this equation, then
the requirenent is fulfilled by neans of the quadratic twist E :
yr2 = x"3 + ZM*A*X + Z*6*B nod p, and the G(p)-isonorphismis
given by F(x,y) := (x*2*2, y*Z"3). Due to this isonorphism
E(GF(p)) and E (G-(p)) have the sane nunber of points, share the
same al gebraic structure, and hence offer the sane | evel of
security. This constraint has al so been used by [ SEC2] and
[ FI PS].

4. The prinme p nust not be of any special form this requirenent is
met by a verifiably pseudo-random generation of the paraneters
(see requirenent 5 in Section 2.1). Although paraneters
specified by existing standards do not neet this requirenent, the
need for such curves over (pseudo-)randomy chosen fields has
al ready been foreseen by the Standards for Efficient Cryptography
Goup (SECG, see [SEC?].

5. #E(GF(p)) < p. As a consequence of the Hasse-Wil Theorem the
nunber of points #E(G-(p)) may be greater than the characteristic
p of the prine field GF(p). |In some cases, even the bit-length
of #E(G-(p)) can exceed the bit-length of p. To avoid overruns
in inplenmentations, we require that #E(G-(p)) < p. |In order to
thwart attacks on digital signature schenmes, sone authors propose
to use q > p, but the attacks described, e.g., in [BRS], appear
infeasible in a well-designed Public Key Infrastructure (PKI).

6. B shall be a non-square nod p. Oherw se, the conpressed
representations of the curve-points (0,0) and (0, X), with X being
the square root of Bwith a least significant bit of 0, would be
identical. As there are inplenentations of elliptic curves that
encode the point at infinity as (0,0), we try to avoid
anbiguities. Note that this condition is stable under quadratic
twi sts as described in condition 3 above. Condition 6 nmakes the
attack described in [G inpossible. It can therefore also be
seen as a security requirenent. This constraint has not been
speci fied by existing standards.
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3. Donmin Parameter Specification

In this section, the elliptic curve domain paraneters proposed are
specified in the foll owi ng way.

For all curves, an IDis given by which it can be referenced.

p is the prine specifying the base field.

A and B are the coefficients of the equation y*"2 = x*"3 + A*Xx + B
nmod p defining the elliptic curve.

G = (x,y) is the base point, i.e., a point in E of prime order,
with x and y being its x- and y-coordinates, respectively.

qis the prime order of the group generated by G

h is the cofactor of Gin E, i.e., #E(G-(p))/q.

For the tw sted curve, we also give the coefficient Z that defines
the i sonmorphismF (see requirement 3 in Section 2.2).

The nethods for the generation of the paraneters are given in
Appendi x A. Proofs for the fulfillnment of the security requirenments
specified in Section 2.1 are given in [EBP].

3. 1. Domai n Paraneters for 160-Bit Curves

Curve-1D: brai npool P160r1

Locht er

E95E4AS5F737059DC60DFC7ADOSB3D8139515620F
340E7BE2A280EB74E2BEG61BADA745D97E8F7C300
1E589A8595423412134FAA2DBDECO5C8D8675E58
BEDSAF16EA3F6A4F62938C4631EBSAF7BDBCDBC3
1667CB477A1LASBEC338F94741669C976316DA6321
E95E4A5F737059DC60DF5991D45029409E60FC09

1
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#Twi st ed curve

Curve-1D: brainpool P160t 1

z

A

q
h

24DBFF5DEC9B986BBFES5295A29BFBAE4ASEOF5D0B
E95E4AS5F737059DC60DFC7ADO5B3D8139515620C
7A556B6DAES35B7B51ED2CAD7 DAA7AOB5C55F380
B199B13B9B34EFC1397E64BAEBOSACC265FF2378
ADD6718B7C7C1961F0991B842443772152C9EOAD
E95E4A5F737059DC60DF5991D45029409E60FC09

1

3.2. Domain Paraneters for 192-Bit Curves

Curve-1D: brainpool P192r1

q
h

C302F41D932A36CDA7A3463093D18DB78FCE476DE1A86297
6A91174076B1EOE19C39C031FES8685CLCAEO040E5C69A28EF
469A28EF7C28CCA3DC721D044F4496BCCA7EF4146FBF25C9
COA0647EAAB6A48753B033C56CBOFO0900A2F5C4853375FD6
14B690866ABD5BB88B5F4828C1490002E6773FA2FA299B8F
C302F41D932A36CDA7A3462F9E9E916B5BESF1029ACAACCL

1

#Twi st ed curve

Curve-1D: brainpool P192t 1

z

A

Locht er

&

1B6F5CC8DB4DC7AF19458A9CB80DC2295E5EB9C3732104CB
C302F41D932A36CDA7A3463093D18DB78FCE476DE1A86294
13D56FFAEC78681E68F9DEB43B35BEC2FB68542E27897B79

3AE9ES8C82F63C30282E1FE7BBF43FA72CA446AF6F4618129
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y = 097E2C5667C2223A902AB5CA449D0084B7E5B3DE7CCCO1CO
q = C302F41D932A36CDA7A3462F9E9E916B5BESF1029AC4ACCL
h =1

3.3. Domain Paraneters for 224-Bit Curves

Curve-1D: brainpool P224r 1

D7C134AA264366862A18302575D1D787B09F075797DA89F57EC8COFF

A = 68A5E62CA9CE6CLC299803A6C1530B514E182AD8B0042A59CAD29F43
B = 2580F63CCFE44138870713B1A92369E33E2135D266DBB372386C400B
X = 0D9029AD2C7E5CF4340823B2A87DC68CIE4ACE3174C1EGEFDEE1I2C07D
y = 58AA56F772C0726F24C6B89EAECDAC24354B9E99CAA3F6D3761402CD
q = D7C134AA264366862A18302575D0FB98D116BCAB6 DDEBCA3ASA7939F
h =1

#Twi sted curve

Curve-1D: brainpool P224t 1
Z = 2DF271E14427A346910CF7A2E6CFA7B3F484E5C2CCE1C8B730E28B3F
A = D7C134AA264366862A18302575D1D787B09F075797DA89F57EC8COFC
B = 4B337D934104CD7BEF271BF60CED1ED20DA14C08B3BB64F18A60888D
X = 6AB1E344CE25FF3896424E7FFE14762ECB49F8928AC0C76029B4D580
y = 0374E9F5143E568CD23F3F4D7COD4B1E41C8CCOD1C6ABD5F1A46DB4AC
q = D7Cl34AA264366862A18302575D0FB98D116BCAB6DDEBCA3ASA7939F

h =1
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3.4. Domain Paraneters for 256-Bit Curves

Curve-1D: brai npool P256r 1

p =
A9FB57DBA1EEA9BC3E660A909D838D726E3BF623D52620282013481D1F6ES377

A =
7D5A0975FC2C3057EEF67530417AFFE7FB8055C126DC5CoCE94A4B44F330B5D9

B =
26DC5C6CE94A4B44F330B5D9BBD7 7CBF958416295CF7E1CE6BCCDC18FF8C07B6

X =
8BD2AEBI9CB7ES57CB2C4B482FFC81B7AFBODE27E1E3BD23C23A4453BDOACE3262

y =
547EF835C3DACAFDO7F8461A14611DCOC27745132DEDBES45C1D54C72F046997

29EBS7DBA1EEA9BCSE660A909D838D7180397AA38561A6F7901EOE82974856A7
h=1

#Twi sted curve

Curve-1D: brai npool P256t 1

7 =
3E2D4BD9597B58639AE7AA669CABI837CF5CF20A2C852D10F655668DFCL50EFO

A =
A9FB57DBA1EEA9BC3E660A909D838D726E3BF623D52620282013481D1F6ES374

B =
662C61C430D84EA4FE66A7733D0B76B7BFO3EBCAAF2F49256 AE58101FEE92B04

X =
A3ESEB3CCLCFE7B7732213B23A656149AFA142CA7AAFBC2B79A191562E1305F4

y =
2D996C823439C56D7F7B22E14644417E69BCB6DE39D027001 DABESF35B25CO9BE

q =
A9FB57DBA1EEA9BC3E660A909D838D718C397AA3B561A6F7901EOE82974856A7

h =1
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3.5. Donmmin Paraneters for 320-Bit Curves
Curve-1D: brainpool P320r 1

p = D35E472036BCAFB7E13C785ED201E065F98FCFAG6F6F40DEFAF92BOECT7893EC
28FCD412B1F1B32E27

A = 3EE30B568FBABOF883CCEBD46D3F3BB8A2A73513F5EB79DA66190EBO8S5FFA9
F492F375A97D860EB4

B = 520883949DFDBC42D3AD198640688A6FE13F41349554B49ACC31DCCD884539
816F5EB4ACBFB1F1A6

X = 43BD7ESAFB53D8B85289BCCA8EESBFEG6F20137D10A087EBGE7871E2A10A599
C710AF8DOD39E20611

y = 14FDD05545EC1CC8AB4093247F77275E0743FFED117182EAA9CY 7877AAACGA
C7D35245D1692E8EE1

q = D35E472036BCAFB7E13C785ED201E065F98FCFASB68F12A32D482EC7EEB658
E98691555B44C59311

h =1
#Twi sted curve
Curve-1D: brai npool P320t 1

Z = 15F75CAF668077F7E85B42EBO1FOA81FF56ECD6191D55CB82B7D861458A18F
EFC3ESAB7496F3C7B1

A = D35E472036BCAFB7E13C785ED201E065F98FCFAGF6F40DEF4F92B9EC7893EC
28FCD412B1F1B32E24

B = A7F561E038EB1ED560B3D147DB782013064C19F27ED27C6780AAF77FB8AS47
CEB5B4FEF422340353

X = 925BE9FBO1AFC6FB4D3E7D4990010F813408AB106CAFO09CB7EEO07868CC136F
FF3357F624A21BED52

y = 63BA3A7A27483EBF6671DBEF7ABB30EBEEO84ES8A0B077AD42A5A0989D1EEY
1B1B9BC0455FBOD2C3

q = D35E472036BCAFB7E13C785ED201E065F98FCFASB68F12A32D482EC7EEB658
E98691555B44C59311

h =1
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3.6. Donmmin Paraneters for 384-Bit Curves
Curve-1D: brainpool P384r1

p = 8CB91E82A3386D280F5D6F7ES0E641DF152F7109ED5456B412B1DA197FB711
23ACD3A729901D1A71874700133107EC53

A = 7BC382C63D8C150C3C72080ACEOSAFAOC2BEA28EAFB22787139165EFBA91F9
OF8AA5814A503ADAEBO04ASC7DD22CE2826

B = 04A8CrDD22CE28268B39B55416F0447C2FB77DE107DCD2A62E880EAS3EEBG2
D57CB4390295DBC9943AB78696FA504C11

X = 1D1C64F068CF45FFA2A63A81B7C13F6B8847A3E77EF14FE3DB7FCAFEOCBD10
ESE826E03436D646AAEF87B2E247DAAF1E

y = 8ABE1D7520F9C2A45CB1EB8BE9SCFD55262B70B29FEECS5864E19C054FF99129
280E4646217791811142820341263C5315

q = 8CB91E82A3386D280F5D6F7ES0E641DF152F7109ED5456B31F166E6CAC0425
A7CF3AB6AF6B7FC3103B883202E9046565

h =1
#Twi sted curve
Curve-1D: brainpool P384t 1

Z = 41DFES8DD399331F7166A66076734A89CDOD2BCDB7D068E44E1F378F41ECBAE
97D2D63DBC87BCCDDCCC5DA39E8589291C

A = 8CB91E82A3386D280F5D6F7E50E641DF152F7109ED5456B412B1DA197FB711
23ACD3A729901D1A71874700133107ECS0

B = 7F519EADA7BDA81BD826DBA647910F8C4B9346ED8CCDC64E4B1ABD11756DCE
1D2074AA263B88805CED70355A33B471EE

X = 18DE98B02DBI9A306F2AFCD7235F72A819B80AB12EBD653172476FECD462AAB
FFCAFF191B946A5F54D8D0AA2F418808CC

y = 25AB056962D30651A114AFD2755AD336747F93475B7A1FCA3B88F2B6A208CC
FE469408584DC2B2912675BF5B9ES82928

q = 8CB91E82A3386D280F5D6F7ES0E641DF152F7109ED5456B31F166E6CAC0425
A7CF3AB6AF6B7FC3103B883202E9046565

h =1

Lochter & Merkle I nf or mat i onal [ Page 13]



RFC 5639 ECC Brai npool Standard Curves & Curve Ceneration March 2010

3.7. Donmain Paraneters for 512-Bit Curves
Curve-1D: brainpool P512r1

p = AADDIDB8DBE9C48B3FD4E6AE33COFCO7CB308DB3B3COD20ED6639CCA703308
717D4ADOB009BC66842AECDAL2AEGA380E62881FF2F2D82C68528AA6056583A48F3

A = 7830A3318B603B89E2327145AC234CC594CBDD8D3DF91610A83441CAEA9863
BC2DED5D5AA8253AA10A2EF1CI98BIACEB57F1117A72BF2C7BI9E7CLACAD7 7TFC94CA

B = 3DF91610A83441CAEA9863BC2DEDSD5AA8253AA10A2EF1C98BIACEBB57F1117
A72BF2C7B9E7CLACAD7 7TFC94CADCO83E67984050B75EBAESDD2809BD638016F723

X = 81AEE4ABDD82ED9645A21322E9CAC6A9385EDIF70B5D916C1B43B62EEF4D009
8EFF3B1F78E2D0D48D50D1687B93B97D5F7C6D504 7406 ASE688B352209BCBIF822

y = 7DDE385D566332ECCOEABFAICF7822FDF209F70024A57B1AA000C55B881F81
11B2DCDE494A5F485E5BCA4BD88A2763AED1CA2B2FA8F0540678CD1EOF3AD80892

q = AADDIDBSDBE9C48B3FDAEGAE33COFCO7CB308DB3B3CID20ED6639CCA703308
70553E5C414CA92619418661197FAC10471DB1D381085DDADDB58796829CA90069

h =1
#Twi sted curve
Curve-1D: brainpool P512t 1

Z = 12EE58E6764838B69782136F0F2D3BA06E27695716054092E60A80BEDB212B
64E585D90BCE13761F85C3F1D2A64E3BESFEA2220F01EBASEEBOF35DBD29D922AB

A = AADDODB8DBE9CA8B3FDAEGAE33CIOFCO7CB308DB3B3COD20EDG6639CCA703308
717D4ADOB009BC66842AECDAL2AE6A380EG2881FF2F2D82C68528 AA6056583A48F0

B = 7CBBBCF9441CFAB/6E1890E46884EAE321F70C0BCB4981527897504BEC3E36
A62BCDFA2304976540F6450085F2DAE145C22553B465763689180EA2571867423E

X = 640ECE5C12788717B9C1BAO6CBC2A6FEBA85842458C56DDE9DB1758D39C031
3D82BA51735CDB3EA499AA77ATD6943A64F7A3F25FE26FO6B51BAA2696FA9035DA

y = 5B534BD595F5AF0FA2C892376C84ACE1BB4E3019B71634C01131159CAEQ03CE
E9D9932184BEEF216BD71DF2DADF86A627306 ECFF96DBB8BACE198B61EOOF8B332

q = AADDIDBSDBE9C48B3FDAEGAE33COFCO7CB308DB3B3CID20ED6639CCA703308
70553E5C414CA92619418661197FAC10471DB1D381085DDADDB58796829CA90069

h =1
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4. bject ldentifiers and ASN. 1 Syntax
4.1. (Object ldentifiers

The root of the tree for the object identifiers defined in this
specification is given by:

ecSt dCur vesAndGener ati on OBJECT | DENTI FI ER: : = {iso(1)
i dentified-organization(3) teletrust(36) algorithm3) signature-
al gorithm(3) ecSign(2) 8}

The object identifier ellipticCurve represents the tree for domain
parameter sets. It has the follow ng val ue:

el lipticCurve OBJECT I DENTIFIER ::= {ecStdCurvesAndGeneration 1}

The tree containing the object identifiers for each set of donmain
paraneters defined in this RFCis:

versi onOne OBJECT IDENTIFIER ::= {ellipticCurve 1}

The following object identifiers represent the donmmi n paraneter sets
defined in this RFC

br ai npool P160r1 OBJECT | DENTI FI ER ::

{versionOne 1}

br ai npool P160t 1 OBJECT | DENTI FI ER :: = {versi onOne 2}

br ai npool P192r1 OBJECT | DENTI FIER ::= {versi onOne 3}

br ai npool P192t 1 OBJECT | DENTI FIER :: = {versionOne 4}

br ai npool P224r1 OBJECT | DENTI FI ER ::

{versi onOne 5}

br ai npool P224t1 OBJECT | DENTI FI ER ::= {versi onOne 6}

br ai npool P256r 1 OBJECT | DENTI FI ER : :

{versionOne 7}

br ai npool P256t 1 OBJECT | DENTI FI ER :: = {versi onOne 8}

br ai npool P320r1 OBJECT | DENTI FI ER ::= {versi onOne 9}

br ai npool P320t 1 OBJECT | DENTI FI ER :: = {versi onOne 10}

br ai npool P384r1 OBJECT | DENTI FI ER ::

{versi onOne 11}

br ai npool P384t1 OBJECT | DENTI FIER ::= {versi onOne 12}
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br ai npool P512r1 OBJECT | DENTI FIER :: = {versi onOne 13}

br ai npool P512t 1 OBJECT | DENTI FI ER ::

{versi onOne 14}
4.2. ASN. 1 Syntax for Usage with X 509 Certificates

The domain parameters specified in this RFC SHALL be used with X 509
certificates in accordance with [RFC5480]. |In particular,

o the algorithmfield of subjectPublicKeylnfo MIST be set to:

* jd-ecPublicKey, if the algorithns that can be used with the
subj ect public key are not restricted, or

* jd-ecDH to restrict the usage of the subject public key to
Elliptic Curve Diffie-Hellnman (ECDH) key agreenent, or

* jd-ecMQV to restrict the usage of the subject public key to
Elliptic Curve Menezes- Qu- Vanstone (ECMQV) key agreenent, and

o the field algorithm paraneter of subjectPublicKeylnfo MIST be of
type:

* nanmedCurve to specify the domain paraneters by one of the
oject Identifiers (O Ds) defined in Section 4.1, or

* specifiedCurve to specify the domain parameters explicitly as
defined in [ RFC5480], or

* inplicitCurve, if the domain paraneters are found in an
i ssuer’s certificate.

If the domain paraneters are explicitly specified using the type
specifiedCurve in the field al gorithm paraneter of

subj ect Publ i cKeyl nfo, ANSI X9.62 [ANSI 1] and [ RFC5480] all ow

i ndi cati ng whether or not a curve and base point have been generated
verifiably in a pseudo-random way. Although the paranmeters specified
in Section 3 have all been generated by the pseudo-random et hods
described in Appendix A, these algorithnms deviate fromthose nandated
in ANSI X9.62, A 3.3.1. Consequently, applications follow ng ANS
X9.62 or [ RFC5480] will not be able to verify the pseudo-randomess
of the paraneters. |In order to avoid rejection of the paraneters,
the ASN. 1 encodi nhg SHOULD NOT specify that the curve or base point
has been generated verifiably at random In particular,
certification authorities (CAs) SHOULD set the contents of
specifiedCurve in the followi ng way:

0 version is set to ecpVerl(1).
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o fieldld includes the fieldType prinme-field and as parameter the
value p of the selected domain paranmeters as specified in Section
3.

o curve includes the values a and b of the selected domain
paraneters as specified in Section 3, but seed is absent.

0 base is the octet string representation of the base point G of the
sel ected domain paraneters as specified in Section 3.

o0 order is set to q of the selected domain paraneters as specified
in Section 3.

o cofactor is set to 1.
0 hash is absent.

5. Security Considerations
The | evel of security provided by symretric ci phers and hash
functions used in conjunction with the elliptic curve domain
paraneters specified in this RFC should roughly match or exceed the
| evel provided by the domain paraneters. The follow ng table

i ndi cates the m ni mum key sizes for symretric ciphers and hash
functions providing at |east (roughly) conparable security.
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R R T +
| elliptic curve |  mnimumlength of | hash functions |
| domain parameters | symetric keys | |
o e e e e oo o e e e e oo o e e e e e e e e oo oo +
| brai npool P160r1 | 80 | SHA- 1, SHA- 224, |
| | | SHA- 256, SHA- 384, |
| | | SHA- 512 |
I I I I
| brai npool P192r1 | 96 | SHA- 224, SHA- 256, |
| | | SHA- 384, SHA-512 |
I I I I
| brai npool P224r1 | 112 | SHA- 224, SHA- 256, |
| | | SHA- 384, SHA-512 |
I I I I
| brai npool P256r1 | 128 | SHA- 256, SHA- 384, |
| | | SHA- 512 |
I I I I
| brai npool P320r1 | 160 | SHA- 384, SHA-512 |
I I I I
| brai npool P384r1 | 192 | SHA- 384, SHA-512 |
| | | |
| brai npool P512r1 | 256 | SHA- 512 |
e +
Table 1

Security properties of the elliptic curve domain paraneters specified
inthis RFC are discussed in Section 2.1. Further security

di scussions specific to elliptic curve cryptography can be found in

[ ANSI 1] and [ SEC1].

6. Intellectual Property Rights

The aut hors have no know edge about any intellectual property rights
that cover the usage of the dommin paraneters defined herein.
However, readers should be aware that inplenentations based on these
domai n paraneters may require use of inventions covered by patent
rights.
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Appendi x A, Pseudo- Random Generati on of Paraneters
In this appendi x, the methods used for pseudo-random generation of
the elliptic curve domain paranmeters are described. A conprehensive
description is given in [ EBP].
Throughout this section the foll owi ng conventions are used:

The conversion between integers x in the range 0 <= x <= 2L - 1 and

bit strings of length L is given by x <--> {x_1,...,x_L} and the
bi nary expansi on
Xx =x 1* 2°L-1) + x 2 * 2"(L-2) + ... + x (L-1)*2 + x L, i.e., the

first bit of the bit string corresponds to the nost significant bit
of the corresponding integer and the last bit to the | east
significant bit.

For a real nunber x, let floor(x) denote the highest integer |ess
than or equal to x.

For updating the seed s of 160-bit |length we use the foll ow ng
function update_seed(s):

1. Convert s to an integer z.
2. Convert (z+1) nod 27160 to a bit string t and output t.

A.1. Generation of Prime Numbers
This section describes the systenmatic selection of the base fields
GF(p) proposed in this specification. The prine generation nmethod is
simlar to the method given in FIPS 186-2 [FIPS], Appendix 6.4, and
ANSI X9.62 [ANSI 1], A 3.2. It is a nodification of the method
"increnental search” given in Section 8.2.2 of [ISO3].

For conputing an integer x in the range 0 <= x <= 2"L - 1 froma seed
s of 160-bit length, we use the followi ng algorithmfind_integer(s):

1. Set v = floor((L-1)/160) and w =L - 160*v.
2. Compute h = SHA-1(s).

3. Let h_ 0 be the bit string obtained by taking the w rightnost bits
of h.

4. Convert s to an integer z.

5 For i from1l to v do:
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A Set z_i = (z+i) nod 2”160
B. Convert z_i to a bit string s_i.
C Set h_i = SHA-1(s_i).
Let h be the string obtained by the concatenation of h_0,...,h_v

6

7

fromleft to right.

Convert h to an integer x and output Xx.

The following procedure is used to generate an L bit prine p froma
160-bit seed s.

1.

2

3.

4.

Set ¢ = find_integer(s).

Let p be the snallest prime p > ¢ with p = 3 nod 4.

If 2°(L-1) <= p <= 2"L - 1 output p and stop

Set s = update_seed(s) and go to Step 1.

For the generation of the primes p used as base fields G-(p) for the
curves defined in this specification (and the correspondi ng tw sted

curves),

been used as initial seed s:

Seed_p 160 for brai npool P160r1
3243F6A8885A308D313198A2E03707344A409382

Seed_p_ 192 for brai npool P192r1
2299F31D0082EFA98ECAE6CB89452821E638D0137

Seed_p 224 for brainpool P224r 1
7BE5466 CF34E90C6CCOAC29B7C97C50DD3F84D5B

Seed_p_ 256 for brai npool P256r 1
5B54709179216D5D98979FB1BD1310BA698DFB5A

Seed_p 320 for brai npool P320r 1
C2FFD72DBD01ADFB7B8E1AFED6A267E96BA7C904

Seed_p_ 384 for brai npool P384r1
5F12C7F9924A19947B3916CF70801F2E2858EFC1

Seed _p 512 for brainpool P512r1
6636920D871574E69A458FEA3F4933D7E0D95748
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Loc

These seeds have been obtained as the first 7 substrings of 160-bit
| ength each of Q = Pi*271120, where Pi is the constant 3.14159...
al so known as Ludol ph’s nunber, i.e.,

Q = Seed p_160|| Seed_p_192||...|| Seed_p_512| | Renmi nder,
where || denotes concatenation

Usi ng these seeds and the above algorithmthe follow ng prines are
obt ai ned:

p_160 = 1332297598440044874827085558802491743757193798159

p_192 = 4781668983906166242955001894344923773259119655253013193367
p_224 = 2272162293245435278755253799591092807334073214594499230443
5472941311

p_256 = 7688495639704534422080974662900164909303795020094305520373
5601445031516197751

p_320 = 1763593322239166354161909842446019520889512772719515192772
9604152886408688021498180955014999035278

p_384 = 2165927077011931617306923684233260497979611638701764860008
1618503821089934025961822236561982844534088440708417973331

p_512 = 8948962207650232551656602815159153422162609644098354511344
597187200057010413552439917934304191956942765446530386427345937963
894309923928536070534607816947

Cenerati on of Pseudo- Random Curves

The generation procedure is simlar to the procedure given in FIPS
PUB 186-2 [FI PS], Appendix 6.4, and ANSI X9.62 [ANSI1], A 3.2.

For conputing an integer x in the range 0 <= x <= 27°(L-1) - 1 froma
seed s of 160-bit length, we use the algorithmfind_integer_2(s),
which slightly differs fromthe nethod used for the generation of the
pri nmes.

1. Set v = floor((L-1)/160) and w =L - 160*v - 1.

2. Compute h = SHA-1(5s).

3. Let h_O be the bit string obtained by taking the w rightnost bits
of h.

4. Convert s to an integer z.
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7

For i from1l to v do:

A Set z_i = (z+i) nod 27160.

B. Convert z i to a bit string s_i.
C. Set h_i = SHA-1(s_i).

Let h be the string obtained by the concatenation of h_0,...,h_v
fromleft to right.

Convert h to an integer x and output Xx.

The following procedure is used to generate the paraneters A and B of
a suitable elliptic curve over GF(p) and a base point Gfroma prine
p of bit length L and a 160-bit seed s.

1.

2

10.

11.

12.

Set h = find_integer_2(s).
Convert h to an integer A

If -3 = A*Z*4 nod p is not solvable, then set s = update_seed(s)
and go to Step 1.

Conmput e one solution Z of -3 = A*Z*4 nod p.
Set s = update_seed(s).

Set B = find_integer_2(s).

If Bis a square nod p, then set s = update_seed(s) and go to
Step 6.

If 4*A"3 + 27*B*2 = 0 nod p, then set s = update_seed(s) and go
to Step 1.

Check that the elliptic curve E over GF(p) given by y*"2 = x"3 +
A*x + B fulfills all security and functional requirenents given
in Section 3. If not, then set s = update_seed(s) and go to Step

&

updat e_seed(s).
Set k = find_integer_2(s).

Determ ne the points Q and -Q having the small est x-coordinate in
E(G-(p)). Randomy select one of themas point P
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13. Compute the base point G=k * P
14. Qutput A B, and G

Note: O course P could al so be used as a base point. However, the
smal | x-coordinate of P could possibly render the curve vulnerable to
si de- channel attacks.

For the generation of curve parameters A and B, and the base points G
defined in this specification, the follow ng values (in hexadeci nal
representation) have been used as initial seed s:

Seed_ab_160 for brai npool P160r1
2B7E151628AED2A6ABF7158809CF4F3C762E7160

Seed_ab_192 for brainpool P192r1
F38B4DA56A784D9045190CFEF324E7738926 CFBE

Seed_ab_224 for brainpool P224r1
5F4BF8D8D3C31D763DA06C80ABB1185EB4F7C7B5

Seed_ab_256 for brainpool P256r1
757F5958490CFD47D7C19BB42158D9554F7B46BC

Seed_ab_320 for brainpool P320r1
ED55CAD79FD5F24D6613C31C3839A2DDF8A9A276

Seed_ab_384 for brainpool P384r1
BCFBFA1C877C56284DAB79CD4C2B3293D20E9ESE

Seed_ab_512 for brai npool P384r1
AF02AC60ACCO3ED874422A52ECB238FEEESABGAD

These seeds have been obtained as the first 7 substrings of 160-bit
| ength each of R = floor(e*271120), where e denotes the constant

2.71828..., also known as Euler’s nunber, i.e.,
R = Seed_ab_160| | Seed_ab_192||...|| Seed_ab_512| | Remai nder,
where || denotes concatenation
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