

 Internet Engineering Task Force (IETF) S. Turner
 Request for Comments: 5752 IECA
 Category: Standards Track J. Schaad
 ISSN: 2070-1721 Soaring Hawk
 January 2010

 Multiple Signatures in Cryptographic Message Syntax (CMS)

 Abstract

 Cryptographic Message Syntax (CMS) SignedData includes the SignerInfo
 structure to convey per-signer information. SignedData supports
 multiple signers and multiple signature algorithms per signer with
 multiple SignerInfo structures. If a signer attaches more than one
 SignerInfo, there are concerns that an attacker could perform a
 downgrade attack by removing the SignerInfo(s) with the ’strong’
 algorithm(s). This document defines the multiple-signatures
 attribute, its generation rules, and its processing rules to allow
 signers to convey multiple SignerInfo objects while protecting
 against downgrade attacks. Additionally, this attribute may assist
 during periods of algorithm migration.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc5752.

 Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

 Turner & Schaad Standards Track [Page 1]

 RFC 5752 Multiple Signatures in S/MIME January 2010

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

 Table of Contents

 1. Introduction ..3
 1.1. Conventions Used in This Document3
 2. Rationale ...3
 2.1. Attribute Design Requirements4
 3. Multiple Signature Indication5
 4. Message Generation and Processing6
 4.1. SignedData Type ..6
 4.2. EncapsulatedContentInfo Type7
 4.3. SignerInfo Type ..7
 4.4. Message Digest Calculation Process7
 4.4.1. multiple-signatures Signed Attribute Generation7
 4.4.2. Message Digest Calculation Process7
 4.5. Signature Generation Process8
 4.6. Signature Verification Process8
 5. Signature Evaluation Processing8
 5.1. Evaluation of a SignerInfo Object9
 5.2. Evaluation of a SignerInfo Set9
 5.3. Evaluation of a SignedData Set10
 6. Security Considerations ..11
 7. References ...11
 7.1. Normative References11
 7.2. Informative References12
 Appendix A. ASN.1 Module...13
 Appendix B. Background...15
 B.1. Attacks..15
 B.2. Hashes in CMS..15

 Turner & Schaad Standards Track [Page 2]

 RFC 5752 Multiple Signatures in S/MIME January 2010

 1. Introduction

 The Cryptographic Message Syntax (CMS; see [CMS]) defined SignerInfo
 to provide data necessary for relying parties to verify the signer’s
 digital signature, which is also included in the SignerInfo
 structure. Signers include more than one SignerInfo in a SignedData
 if they use different digest or signature algorithms. Each
 SignerInfo exists independently and new SignerInfo structures can be
 added or existing ones removed without perturbing the remaining
 signatures.

 The concern is that if an attacker successfully attacked a hash or
 signature algorithm, the attacker could remove all SignerInfo
 structures except the SignerInfo with the successfully attacked hash
 or signature algorithm. The relying party is then left with the
 attacked SignerInfo even though the relying party supported more than
 just the attacked hash or signature algorithm.

 A solution is to have signers include a pointer to all the signer’s
 SignerInfo structures. If an attacker removes any SignerInfo, then
 relying parties will be aware that an attacker has removed one or
 more SignerInfo objects.

 Note that this attribute ought not be confused with the
 countersignature attribute (see Section 11.4 of [CMS]) as this is not
 intended to sign over an existing signature. Rather, it is to
 provide a pointer to additional signatures by the signer that are all
 at the same level. That is, countersignature provides a serial
 signature while the attribute defined herein provides pointers to
 parallel signatures by the same signer.

 1.1. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 2. Rationale

 The rationale for this specification is to protect against downgrade
 attacks that remove the ’strong’ signature to leave the ’weak’
 signature, which has presumably been successfully attacked. If a CMS
 SignedData object has multiple SignerInfo objects, then the attacker,
 whether it be Alice, Bob, or Mallory, can remove a SignerInfo object
 without the relying party being aware that more than one was
 generated.

 Turner & Schaad Standards Track [Page 3]

 RFC 5752 Multiple Signatures in S/MIME January 2010

 Removal of a SignerInfo does not render the signature invalid nor
 does it constitute an error. In the following scenario, a signer
 generates a SignedData with two SignerInfo objects, one with a ’weak’
 algorithm and one with a ’strong’ algorithm; there are three types of
 relying parties:

 1) Those that support only a ’weak’ algorithm. If both SignerInfo
 objects are present, the relying party processes the algorithm it
 supports. If both SignerInfo objects are not present, the relying
 party can easily determine that another SignerInfo has been
 removed, but not changed. In both cases, if the ’weak’ signature
 verifies, the relying party MAY consider the signature valid.

 2) Those that support only a ’strong’ algorithm. If both SignerInfo
 objects are present, the relying party processes the algorithm it
 supports. If both SignerInfo objects are not present, the relying
 party can easily determine that another SignerInfo has been
 removed, but the relying party doesn’t care. In both cases, if
 the ’strong’ signature verifies, the relying party MAY consider
 the signature valid.

 3) Those that support both a ’weak’ algorithm and a ’strong’
 algorithm. If both SignerInfo objects are present, the relying
 party processes both algorithms. If both SignerInfo objects are
 not present, the relying party can easily determine that another
 SignerInfo has been removed. In both cases, if the ’strong’
 and/or ’weak’ signatures verify, the relying party MAY consider
 the signature valid. (Policy may dictate that both signatures are
 required to validate if present.)

 Local policy MAY dictate that the removal of the ’strong’ algorithm
 results in an invalid signature. See Section 5 for further
 processing.

 2.1. Attribute Design Requirements

 The attribute will have the following characteristics:

 1) Use CMS attribute structure;

 2) Be computable before any signatures are applied;

 3) Contain enough information to identify individual signatures
 (i.e., a particular SignerInfo); and

 4) Contain enough information to resist collision, preimage, and
 second preimage attacks.

 Turner & Schaad Standards Track [Page 4]

 RFC 5752 Multiple Signatures in S/MIME January 2010

 3. Multiple Signature Indication

 The multiple-signatures attribute type specifies a pointer to a
 signer’s other multiple-signatures attribute(s). For example, if a
 signer applies three signatures, there must be two attribute values
 for multiple-signatures in each SignerInfo. The 1st SignerInfo
 object points to the 2nd and 3rd SignerInfo objects. The 2nd
 SignerInfo object points to the 1st and 3rd SignerInfo objects. The
 3rd SignerInfo object points to the 1st and 2nd SignerInfo objects.

 The multiple-signatures attribute MUST be a signed attribute. The
 number of attribute values included in a SignerInfo is the number of
 signatures applied by a signer less one. This attribute is multi-
 valued, and there MAY be more than one AttributeValue present. The
 following object identifier identifies the multiple-signatures
 attribute:

 id-aa-multipleSignatures OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
 id-aa(16) 51 }

 multiple-signatures attribute values have the ASN.1 type
 MultipleSignatures:

 MultipleSignatures ::= SEQUENCE {
 bodyHashAlg DigestAlgorithmIdentifier,
 signAlg SignatureAlgorithmIdentifier,
 signAttrsHash SignAttrsHash,
 cert ESSCertIDv2 OPTIONAL}

 SignAttrsHash ::= SEQUENCE {
 algID DigestAlgorithmIdentifier,
 hash OCTET STRING }

 The fields in MultipleSignatures have the following meaning:

 - bodyHashAlg includes the digest algorithmIdentifier for the
 referenced multiple-signatures attribute.

 - signAlg includes the signature algorithmIdentifier for the
 referenced multiple-signatures attribute.

 - signAttrsHash has two fields:

 -- algId MUST match the digest algorithm for the SignerInfo in
 which this multiple-signatures attribute value is placed.

 -- hash is the hash value of the signedAttrs (see Section 4.3).

 Turner & Schaad Standards Track [Page 5]

 RFC 5752 Multiple Signatures in S/MIME January 2010

 - cert is optional. It identities the certificate used to sign the
 SignerInfo that contains the other multiple-signatures
 attribute(s). It MUST be present if the fields in the other
 multiple-signatures attribute(s) are the same.

 The following is an example:

 SignedData
 DigestAlg=sha1,sha256
 SignerInfo1 SignerInfo2
 digestAlg=sha1 digestAlg=sha256
 signatureAlg=dsawithsha1 signatureAlg=ecdsawithsha256
 signedAttrs= signedAttrs=
 signingTime1 signingTime1
 messageDigest1 messageDigest2
 multiSig1= multiSig2=
 bodyHash=sha256 bodyHash=sha1
 signAlg=ecdsawithsha256 signAlg=dsawithsha1
 signAttrsHash= signAttrsHash=
 algID=sha1 algID=sha256
 hash=value1 hash=value2

 4. Message Generation and Processing

 The following are the additional procedures for message generation
 when using the multiple-signatures attribute. These paragraphs track
 with Sections 5.1-5.6 in [CMS].

 4.1. SignedData Type

 The following steps MUST be followed by a signer when generating
 SignedData:

 - The signer MUST indicate the CMS version.

 - The signer SHOULD include the digest algorithm used in
 SignedData.digestAlgorithms, if the digest algorithm’s identifier
 is not already present.

 - The signer MUST include the encapContentInfo. Note that the
 encapContentInfo is the same for all signers in this SignedData.

 - The signer SHOULD add certificates sufficient to contain
 certificate paths from a recognized "root" or "top-level
 certification authority" to the signer, if the signer’s
 certificates are not already present.

 Turner & Schaad Standards Track [Page 6]

 RFC 5752 Multiple Signatures in S/MIME January 2010

 - The signer MAY include the Certificate Revocation Lists (CRLs)
 necessary to validate the digital signature, if the CRLs are not
 already present.

 - The signer MUST:

 -- Retain the existing signerInfo objects.

 -- Include their signerInfo object(s).

 4.2. EncapsulatedContentInfo Type

 The procedures for generating EncapsulatedContentInfo are as
 specified in Section 5.2 of [CMS].

 4.3. SignerInfo Type

 The procedures for generating SignerInfo are as specified in Section
 4.4.1 of [CMS] with the following addition:

 The signer MUST include the multiple-signatures attribute in
 signedAttrs.

 4.4. Message Digest Calculation Process

 4.4.1. multiple-signatures Signed Attribute Generation

 The procedure for generating the multiple-signatures signed attribute
 is as follows:

 1) All other signed attributes are placed in the respective
 SignerInfo structures, but the signatures are not yet computed for
 the SignerInfo.

 2) The multiple-signatures attributes are added to each of the
 SignerInfo structures with the SignAttrsHash.hash field containing
 a zero-length octet string.

 3) The correct SignAttrsHash.hash value is computed for each of the
 SignerInfo structures.

 4) After all hash values have been computed, the correct hash values
 are placed into their respective SignAttrsHash.hash fields.

 4.4.2. Message Digest Calculation Process

 The remaining procedures for generating the message-digest attribute
 are as specified in Section 5.4 of [CMS].

 Turner & Schaad Standards Track [Page 7]

 RFC 5752 Multiple Signatures in S/MIME January 2010

 4.5. Signature Generation Process

 The procedures for signature generation are as specified in Section
 5.5 of [CMS].

 4.6. Signature Verification Process

 The procedures for signature verification are as specified in Section
 5.6 of [CMS] with the following addition:

 If the SignedData signerInfo includes the multiple-signatures
 attribute, the attribute’s values must be calculated as described in
 Section 4.4.1.

 For every SignerInfo to be considered present for a given signer, the
 number of MultipleSignatures AttributeValue(s) present in a given
 SignerInfo MUST equal the number of SignerInfo objects for that
 signer less one and the hash value present in each of the
 MultipleSignatures AttributeValue(s) MUST match the output of the
 message digest calculation from Section 4.4.1 for each SignerInfo.

 The hash corresponding to the n-th SignerInfo must match the value in
 the multiple-signatures attribute that points to the n-th SignerInfo
 present in all other SignerInfo objects.

 5. Signature Evaluation Processing

 This section describes recommended processing of signatures when
 there are more than one SignerInfo present in a message. This may be
 due to either multiple SignerInfo objects being present in a single
 SignedData object or multiple SignerData objects embedded in each
 other.

 The text in this section is non-normative. The processing described
 is highly recommended, but is not forced. Changes in the processing
 that have the same results with somewhat different orders of
 processing is sufficient.

 Order of operations:

 1) Evaluate each SignerInfo object independently.

 2) Combine the results of all SignerInfo objects at the same level
 (i.e., attached to the same SignerData object).

 3) Combine the results of the nested SignerData objects. Note that
 this should ignore the presence of other CMS objects between the
 SignedData objects.

 Turner & Schaad Standards Track [Page 8]

 RFC 5752 Multiple Signatures in S/MIME January 2010

 5.1. Evaluation of a SignerInfo Object

 When evaluating a SignerInfo object, there are three different pieces
 that need to be examined.

 The first piece is the mathematics of the signature itself (i.e., can
 one actually successfully do the computations and get the correct
 answer?). This result is one of three results. The mathematics
 succeeds, the mathematics fails, or the mathematics cannot be
 evaluated. The type of things that lead to the last state are non-
 implementation of an algorithm or required inputs, such as the public
 key, are missing.

 The second piece is the validation of the source of the public key.
 For CMS, this is generally determined by extracting the public key
 from a certificate. The certificate needs to be evaluated. This is
 done by the procedures outlined in [PROFILE]. In addition to the
 processing described in that document, there may be additional
 requirements on certification path processing that are required by
 the application in question. One such set of additional processing
 is described in [SMIME-CERT]. One piece of information that is part
 of this additional certificate path processing is local and
 application policy. The output of this processing can actually be
 one of four different states: Success, Failure, Indeterminate, and
 Warning. The first three states are described in [PROFILE]; Warning
 would be generated when it is possible that some information is
 currently acceptable, but may not be acceptable either in the near
 future or under some circumstances.

 The third piece of the validation is local and application policy as
 applied to the contents of the SignerInfo object. This would cover
 such issues as the requirements on mandatory signed attributes or
 requirements on signature algorithms.

 5.2. Evaluation of a SignerInfo Set

 Combining the results of the individual SignerInfo objects into a
 result for a SignedData object requires knowledge of the results for
 the individual SignerInfo objects, the required application policy,
 and any local policies. The default processing if no other rules are
 applied should be:

 1) Group the SignerInfo objects by the signer.

 2) Take the best result from each signer.

 3) Take the worst result from all of the different signers; this is
 the result for the SignedData object.

 Turner & Schaad Standards Track [Page 9]

 RFC 5752 Multiple Signatures in S/MIME January 2010

 Application and local policy can affect each of the steps outlined
 above.

 In Step 1:

 - If the subject name or subject alternative name(s) cannot be used
 to determine if two SignerInfo objects were created by the same
 identity, then applications need to specify how such matching is to
 be done. As an example, the S/MIME message specification [SMIME-
 MSG] could say that as long as the same rfc822Name exists in either
 the subject name or the subject alt name they are the same
 identity. This would be true even if other information that did
 not match existed in these fields.

 - Some applications may specify that this step should be skipped;
 this has the effect of making each SignerInfo object independent of
 all other SignerInfo objects even if the signing identity is the
 same. Applications that specify this need to be aware that
 algorithm rollover will not work correctly in this case.

 In Step 2:

 - The major policy implication at this step is the treatment of and
 order for the indeterminate states. In most cases, this state
 would be placed between the failure and warning states. Part of
 the issue is the question of having a multi-state or a binary
 answer as to success or failure of an evaluation. Not every
 application can deal with the statement "try again later". It may
 also be dependent on what the reason for the indeterminate state
 is. It makes more sense to try again later if the problem is that
 a CRL cannot be found than if you are not able to evaluate the
 algorithm for the signature.

 In Step 3:

 - The same policy implications from Step 2 apply here.

 5.3. Evaluation of a SignedData Set

 Simple applications will generally use the worst single outcome
 (success, unknown, failure) as the outcome for a set of SignedData
 objects (i.e., one failure means the entire item fails). However,
 not all applications will want to have this behavior.

 Turner & Schaad Standards Track [Page 10]

 RFC 5752 Multiple Signatures in S/MIME January 2010

 A work flow application could work as follows:

 The second signer will modify the original content, keep the original
 signature, and then sign the message. This means that only the
 outermost signature is of significance during evaluation. The second
 signer is asserting that they successfully validated the inner
 signature as part of its processing.

 A Signed Mail application could work as follows:

 If signatures are added for the support of [ESS] features, then the
 fact that an outer layer signature cannot be validated can be treated
 as a non-significant failure. The only thing that matters is that
 the originator signature is valid. This means that all outer layer
 signatures that fail can be stripped from the message prior to
 display leaving only the inner-most valid signature to be displayed.

 6. Security Considerations

 Security considerations from the hash and signature algorithms used
 to produce the SignerInfo apply.

 If the hashing and signing operations are performed by different
 entities, the entity creating the signature must ensure that the hash
 comes from a "trustworthy" source. This can be partially mitigated
 by requiring that multiple hashes using different algorithms are
 provided.

 This attribute cannot be relied upon in the event that all of the
 algorithms used in the signer attribute are ’cracked’. It is not
 possible for a verifier to determine that a collision could not be
 found that satisfies all of the algorithms.

 Local policy and applications greatly affect signature processing.
 The application of local policy and the requirements specific to an
 application can both affect signature processing. This means that a
 signature valid in one context or location can fail validation in a
 different context or location.

 7. References

 7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [CMS] Housley, R., "Cryptographic Message Syntax (CMS)", RFC
 5652, September 2009.

 Turner & Schaad Standards Track [Page 11]

 RFC 5752 Multiple Signatures in S/MIME January 2010

 [PROFILE] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation
 List (CRL) Profile", RFC 5280, May 2008.

 [SMIME-CERT] Ramsdell, B. and S. Turner, "Secure/Multipurpose
 Internet Mail Extensions (S/MIME) Version 3.2
 Certificate Handling", RFC 5750, January 2010.

 [SMIME-MSG] Ramsdell, B. and S. Turner, "Secure/Multipurpose
 Internet Mail Extensions (S/MIME) Version 3.2 Message
 Specification", RFC 5751, January 2010.

 [ESS] Hoffman, P., Ed., "Enhanced Security Services for
 S/MIME", RFC 2634, June 1999.

 [ESSCertID] Schaad, J., "Enhanced Security Services (ESS) Update:
 Adding CertID Algorithm Agility", RFC 5035, August
 2007.

 7.2. Informative References

 [ATTACK] Hoffman, P. and B. Schneier, "Attacks on Cryptographic
 Hashes in Internet Protocols", RFC 4270, November 2005.

 Turner & Schaad Standards Track [Page 12]

 RFC 5752 Multiple Signatures in S/MIME January 2010

 Appendix A. ASN.1 Module

 MultipleSignatures-2008

 { iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs9(9) smime(16) modules(0)
 id-mod-multipleSig-2008(34) }

 DEFINITIONS IMPLICIT TAGS ::=

 BEGIN

 -- EXPORTS All

 -- The types and values defined in this module are exported for use
 -- in the other ASN.1 modules. Other applications may use them for
 -- their own purposes.

 IMPORTS

 -- Imports from RFC 5652 [CMS], 12.1

 DigestAlgorithmIdentifier, SignatureAlgorithmIdentifier
 FROM CryptographicMessageSyntax2004
 { iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs9(9) smime(16) modules(0) cms-2004(24) }

 -- Imports from RFC 5035 [ESSCertID], Appendix A

 ESSCertIDv2
 FROM ExtendedSecurityServices-2006
 { iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs9(9) smime(16) modules(0) id-mod-ess-2006(30) }

 ;

 -- Section 3.0

 id-aa-multipleSignatures OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs9(9) id-aa(2) 51 }

 MultipleSignatures ::= SEQUENCE {
 bodyHashAlg DigestAlgorithmIdentifier,
 signAlg SignatureAlgorithmIdentifier,
 signAttrsHash SignAttrsHash,
 cert ESSCertIDv2 OPTIONAL }

 Turner & Schaad Standards Track [Page 13]

 RFC 5752 Multiple Signatures in S/MIME January 2010

 SignAttrsHash ::= SEQUENCE {
 algID DigestAlgorithmIdentifier,
 hash OCTET STRING }

 END -- of MultipleSignatures-2008

 Turner & Schaad Standards Track [Page 14]

 RFC 5752 Multiple Signatures in S/MIME January 2010

 Appendix B. Background

 This is an informational appendix. This appendix enumerates all
 locations in CMS where hashes are used and the possible attacks on
 those hash locations.

 B.1. Attacks

 As noted in [ATTACK], the following types of resistance are needed
 against known attacks:

 1) Collision Resistance: Find x and y where x != y and H(x) = H(y)

 2) Preimage Resistance: Given y, find x where H(x) = y

 3) Second Preimage Resistance: Given y, find x where H(x) = H(y)

 Note: It is known that a collision resistance attack is simpler than
 a second preimage resistance attack, and it is presumed that a second
 preimage resistance attack is simpler than a preimage attack.

 B.2. Hashes in CMS

 Within a SignerInfo there are two places where hashes are applied and
 hence can be attacked: the body and the signed attributes. The
 following outlines the entity that creates the hash, the entity that
 attacks the hash, and the type of resistance required:

 1) Hash of the Body (i.e., the octets comprising the value of the
 encapContentInfo.eContent OCTET STRING omitting the tag and length
 octets, as per 5.4 of [CMS]).

 a) If Alice creates the body to be hashed, then:

 i) Alice can attack the hash. This attack requires a
 successful collision resistance attack.

 ii) Mallory can attack the hash. This attack requires a
 successful second preimage resistance attack.

 b) If Alice hashes a body provided by Bob, then:

 i) Alice can attack the hash. This attack requires a
 successful second preimage attack.

 Turner & Schaad Standards Track [Page 15]

 RFC 5752 Multiple Signatures in S/MIME January 2010

 ii) Bob can attack the hash. This attack requires a successful
 Collision Resistance attack. If Alice has the ability to
 "change" the content of the body in some fashion, then this
 attack requires a successful second preimage attack. (One
 example would be to use a keyed hash function.)

 iii) Mallory can attack the hash. This attack requires a
 successful second preimage attack.

 c) If Alice signs using a hash value provided by Bob (in this
 case, Alice is presumed to never see the body in question),
 then:

 i) Alice can attack the hash. This attack requires a
 successful preimage attack.

 ii) Bob can attack the hash. This attack requires a successful
 collision resistance attack. Unlike case (b), there is
 nothing that Alice can do to upgrade the attack.

 iii) Mallory can attack the hash. This requires a successful
 preimage attack if the content is unavailable to Mallory and
 a successful second preimage attack if the content is
 available to Mallory.

 2) Hash of signed attributes (i.e., the complete Distinguished
 Encoding Rules (DER) encoding of the SignedAttrs value contained
 in the signedAttrs field, as per 5.4 of [CMS]).

 There is a difference between hashing the body and hashing the
 SignedAttrs value in that one should not accept a sequence of
 attributes to be signed from a third party. In fact, one should
 not accept attributes to be included in the signed attributes list
 from a third party. The attributes are about the signature you
 are applying and not about the body. If there is meta-information
 that needs to be attached to the body by a third party, then they
 need to provide their own signature and you need to add a
 countersignature. (Note: The fact that the signature is to be
 used as a countersignature is a piece of information that should
 be accepted, but it does not directly provide an attribute that is
 inserted in the signed attribute list.)

 a) Alice can attack the hash. This requires a successful
 collision resistance attack.

 b) Mallory can attack the hash. This requires a successful second
 preimage resistance attack.

 Turner & Schaad Standards Track [Page 16]

 RFC 5752 Multiple Signatures in S/MIME January 2010

 c) Bob can attack the hash and Bob controls the value of the
 message digest attribute used. This case is analogous to the
 current attacks [ATTACK]. Bob can attack the hash value
 generated by Alice based on a prediction of the signed
 attributes and the hash algorithm Alice will be using to create
 the signature. If Bob successfully predicts these items, the
 attack requires a successful collision resistance attack. (It
 is expected that if Alice uses a keyed hashing function as part
 of the signature, this attack will be more difficult as Bob
 would have a harder time prediction the key value.)

 It should be noted that both of these attacks are considered to be
 more difficult than the attack on the body since more structure is
 designed into the data to be hashed than is frequently found in the
 body and the data is shorter in length than that of the body.

 The successful prediction of the signing-time attribute is expected
 to be more difficult than with certificates as the time would not
 generally be rounded. Time stamp services can make this more
 unpredictable by using a random delay before issuing the signature.

 Allowing a third party to provide a hash value could potentially make
 an attack simpler when keyed hash functions are used since there is
 more data than can be modified without changing the overall structure
 of the signed attribute structure.

 Authors’ Addresses

 Sean Turner
 IECA, Inc.
 3057 Nutley Street, Suite 106
 Fairfax, VA 22031
 USA

 EMail: turners@ieca.com

 Jim Schaad
 Soaring Hawk Consulting

 EMail: jimsch@exmsft.com

 Turner & Schaad Standards Track [Page 17]

